На макроуровне объект проектирования рассматривают как динамическую систему с сосредоточенными параметрами. Математические модели макроуровня представляют собой системы обыкновенных дифференциальных уравнений. Эти модели используют при определении параметров технического объекта и его функциональных элементов.
На микроуровне объект представляется как сплошная среда с распределенными параметрами. Для описания процессов функционирования таких объектов используют дифференциальные уравнения в частных производных. На микроуровне проектируют неделимые по функциональному признаку элементы технической системы, называемые базовыми элементами. Примерами таких элементов являются рамы, панели, корпусные детали, валы, диски фрикционных механизмов и др. Проектирование их основано на анализе сложно-напряженного состояния. При этом, естественно, базовый элемент рассматривается как система, состоящая из множества однотипных функциональных элементов одной и той же физической природы, взаимодействующих между собой и находящихся под воздействием внешней среды и других элементов технического объекта, также являющихся внешней средой по отношению к базовому элементу.
На всех рассмотренных иерархических уровнях используют следующие виды математических моделей: детерминированные и вероятностные, теоретические и экспериментальные факторные, линейные и нелинейные, динамические и статические, непрерывные и дискретные, функциональные и структурные.
По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования,
В инвариантной форме математическая модель представляется системой уравнений (дифференциальных, алгебраических), вне связи с методом решения этих уравнений.
В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений.
Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на I основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.
Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т. п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.
Среди алгоритмических моделей выделяют имитационные модели, предназначенные для имитации физических и информационных процессов, протекающих в объекте при функционировании его под воздействием различных факторов внешней среды.
Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.
Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими переменными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа И-ИЛИ-дерева. Они позволяют аккумулировать накопленный опыт, используя описания всех существующих аналогов, известных из патентной литературы, и гипотетических объектов. Такие модели наиболее широко используют на метауровне при выборе технического решения.
Перейти на страницу: 1 2 3
|