Классификация математических моделей

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства объекта и позволяют решать задачи как параметрического, так и структурного синтеза. Их широко используют на всех иерархических уровнях, стадиях и этапах, при функциональном, конструкторском и технологическом проектировании. На метауровне функциональные модели позволяют решать задачи прогнозирования, на макроуровне - выбора структуры и оптимизации внутренних параметров технического объекта, на макроуровне - оптимизации параметров базовых элементов и несущих конструкций.

По способам получения функциональные математические модели делятся на теоретические и экспериментальные.

Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе изучения поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик". Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используют физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона. Гука. Кирхгофа. Фурье и др.

Формальный подход использует общие математические принципы и применяется при построении как теоретических, гак и экспериментальных моделей.

Построение теоретических формальных моделей основано на вариационном принципе Гамильтона-Остроградского. Для динамических систем с сосредоточенными параметрами вариационный принцип приводит к уравнениям Лагранжа второго рода.

Экспериментальные модели - формальные. Они не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) осуществлять их измерение. Варьируемые параметры при этом называют факторами. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области факторного пространства, в которой осуществлялось варьирование факторов в эксперименте. Поэтому экспериментальные математические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих как во всей технической системе, так и в каждом ее элементе в отдельности.

Следовательно, экспериментальные факторные модели не могут быть приняты в качестве физических законов. Вместе с тем методы, применяемые для построения этих моделей (метод статистических испытаний, регрессионный анализ, корреляционный анализ, планирование эксперимента и др.) широко используются при проверке научных гипотез.

Функциональные математические модели могут быть линейные и нелинейные.

Линейные модели содержат только линейные функции фазовых переменных и их производных. Характеристики многих элементов реальных технических объектов нелинейные. Математические модели таких объектов включают нелинейные функции фазовых переменных и (или) их производных и относятся к нелинейным.

С целью упрощения задач проектирования на высших иерархических уровнях используют простые линейные модели. Если описание технического объекта представлено системой линейных обыкновенных дифференциальных уравнений, то, применяя преобразование Лапласа, ее можно привести к системе алгебраических уравнений с комплексными переменными, решение которой значительно проще, чем исходной системы дифференциальных уравнений. Такой подход используется для построения математических моделей на метауровне. В моделях макроуровня следует учитывать нелинейные свойства технического объекта.

Перейти на страницу:
1 2 3